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Aerodynamic instabilities of axial compressors are investigated numerically and compared with
experimental results. The compressor #ow in the interblade-row spaces is simulated by means
of 2-D Euler equations while the blade rows are modelled as quasi-steady actuator disks. The
coupling of di!erent unbladed regions of the compressor by actuator disks, which is character-
ized by the in#uence of stator and rotor, is captured in terms of conservation laws and source
terms by means of compressor characteristics. At in#ow and out#ow nonre#ecting boundary
conditions are used in order to avoid any nonphysical re#ections at the boundary. Numerically
simulating this model for selected initial and boundary conditions, we observe that for
increasing values of the imposed exit pressure the compressor #ow undergoes several qualitat-
ive changes. At some critical value of exit pressure a primary stable steady state losses stability
to several coexisting time-periodic states with a number of rotating stall cells. While for these
time-periodic states the mass #ow does not depend on time, all solution branches lead "nally to
surge, i.e., to states with an oscillation of mass #ow in time if the exit pressure is su$ciently
large. In addition, the numerical results are compared with experimental measurements.
( 2001 Academic Press.
1. INTRODUCTION

AXIAL COMPRESSION SYSTEMS which are part of turbomachines are designed to transfer energy
from the rotor to the #uid resulting in an overall rise of its enthalpy and an associated
pressure rise. The #uid is guided in a steady #ow through an annular duct, where by
rechannelling the #uid by rotor and stator blades in di!erent stages kinetic energy is
transferred into internal energy. The reverse occurs in a turbine, which delivers kinetic
energy in exchange for thermal energy of the #uid resulting in a reduction of its enthalpy
and an associated pressure drop. An overview of turbomachinary theory is given for
example by Cordes (1963) and Lewis (1996).

It is well known from experimental measurement that if the mass #ow through the
compressor is su$ciently large there exists a stable steady state. If the mass #ow is
reduced, for example by throttling the compressor, the steady #ow losses stability to a
sPresent address: EADS Airbus GMBH, Kreetslag 10, D-21129 Hamburg, Germany.
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time-dependent state. Two main types of aerodynamic #ow instabilities in compressors are well
known: rotating stall and surge (Gravdahl & Egeland 1999). Rotating stall is a propagation
of disturbances in circumferential direction and located to a single rotor or stator. Explana-
tions of rotating stall mechanisms were given by Emmons et al. (1955). Surge is an instability
of the #ow in the whole compressor and is characterized by #ow oscillations through
the compressor in axial direction with a low frequency compared to rotating stall. In the
compressor characteristic it is represented as a limit cycle. These instabilities limit the range
of operation for compressors and lead to a reduction of its capacity or may destroy
the compressor. A central problem for design of turbomachines is to understand and to
model the inception of these #ow instabilities and to develop perturbation resistant
aerodynamic design features. Instabilities may be avoided by using control systems to
prevent the operating point of the compressor to enter the unstable region in the compres-
sor characteristic or by stabilizing unstable states which is known as active surge/stall
control (Gravdahl 1998). The essential aim of the theoretical investigation is to explain stall
and surge mechanisms and to identify the location of inception points, what is still an
unsolved problem. To this end a number of compressor models have been developed and
numerical calculations of these models have been done in order to investigate compressor
instabilities. In some sense still a step further goes a bifurcation, or qualitative, analysis, by
which, in contrast to simply simulating a system for selected initial conditions, one tries to
get an overview of the attractor structure of the model, i.e., of the set of possible time-
asymptotic states. The main objective of a bifurcation analysis is the determination of the
time-asymptotic states for a given set of external control parameters and the characteriza-
tion of the qualitative changes of these states (bifurcations) that occur when the control
parameters are varied. The details of the relaxation towards the attractors, as for example
the temporal evolution of instabilities, are of lesser interest here. This approach will be
investigated in the present paper.

The #ows in turbocompressors are highly irregular and turbulent. The full description of
such #ows by direct numerical calculation of the Navier}Stokes equations (NSE) is not
a realistic task. It is beyond analytic methods and beyond the possibilities of computers at
the present time and in the foreseeable future. For this reason a number of turbulence and
boundary layer models are frequently used if the spatial and temporal resolution of the
simulation is not able to resolve the whole range of turbulence in space and time (Wilcox
1993; Merz et al., 1996). A more realistic task is the approximate description of large-scale
behaviour of compressor #ows where the viscous e!ects in the blade passages are modelled
while the viscous e!ects in the unbladed regions are neglected. This is justi"ed since
Reynolds numbers, Re, in high-speed compressors are very large (Re+106). Therefore, in
order to model the #ow through a multistage high-speed compressor Euler equations of gas
dynamics (Anderson et al., 1984; LeVeque 1990) are combined frequently with an external
forcing to model the in#uence of stator or rotor or the transfer from bladed to unbladed
regions and vice versa in the compressor.

The majority of compressor models simulate the compressor #ow by a low-dimensional
system of ordinary di!erential equations (ODE). In 1976 Greitzer and Moore started
a systematic investigation of the stability behaviour of steady-state solutions in axial
compressors (Greitzer 1976a, b, 1981; Greitzer & Moore 1986; Moore & Greitzer 1986).
Beginning with a rather simple model, namely a low-dimensional nonlinear system of
ODEs, they included more and more details of the geometry of the compressor. These
models are able to describe the inception of surge oscillations, while rotating stall is
observed as a pressure drop. Bifurcation theory has been applied by McCaughan (1989) to
the low-dimensional Greitzer (1976a) model and by Br+ns (1988, 1990) to the model of
Greitzer & Moore (1986). It has been shown that surge occurs after a Hopf bifurcation where
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Greitzer's B parameter is changed to control the system. Bifurcation theory has been applied
also by Liaw & Abed (1996) to derive control methods for the Moore}Greitzer model.

More recently, Euler equations of gas dynamics have been used to model the #ow in
compressors. It has been found that surge which is a one-dimensional compression system
response occurs after an initial period of rotating stall (Day 1994). There are two types of
mechanisms leading to rotating stall which result from an initial #ow "eld instability for
a throttled compressor with "xed rotation speed. Spike type stall inception, i.e., distinctly
localized disturbances are observed in one individual blade passage and propagate in
a neighbouring blade passage (Day 1993). Another type of stall, modal-type stall inception,
is caused by #ow "eld disturbances, whose lengthscales are large and the propagation speed
is small compared to spikes (McDougall et al., 1990; Longley 1994). In 1995 a two-
dimensional compressor model has been introduced by Breuer (1995, 1996) to investigate
#ow instabilities. The in#uence of blading has been modelled by special source terms. A very
good correspondence between calculated and measured data of the complex #ows has been
observed. Imposing a special force, which describes the in#uence of blades, Longley (1996,
1997) and Demargne & Longley (1997) introduced a model, which combines 1-D simula-
tions in blade passages and 2-D simulations in the unbladed regions. A main result of their
investigation is that varying the mass #ow does more in#uence the stability of the #ow than
varying the blade angles.

In the present paper, we continue the study of Breuer and Longley by identifying system
parameters which in#uence the solution behaviour of the model. By systematically chang-
ing these parameters we are able to describe a scenario for the transition from steady-state
#ow to surge. The compressor model developed here is concerned with the approximate
description of large-scale long-term behaviour of compressor #ows. The #ow is simulated in
unbladed regions with 2-D Euler equations of gas dynamics, while rotor and stator are
modelled as actuator disks. The paper is structured as follows. In Section 2, we introduce
the Euler equations of gas dynamics, while in Section 3 we describe the model for
a multistage axial compressor under consideration. Then in Section 4, we present our
numerical results. We describe the qualitative changes of the #ow with increasing exit
pressure. In Section 5, we compare our numerical results with measured data. Section 6,
"nally, contains a brief conclusion.

2. BASIC EQUATIONS OF GAS DYNAMICS

We start from the Euler equations for a compressible, inviscid, ideal gas with constant
material properties [cf., e.g., Anderson et al. (1984), Courant & Friedrichs (1976)],

Lo
Lt

#div (ou)"fo , (1)

oA
Lu

Lt
#(u '$)uB#$p"fu , (2)

LE

Lt
#div (u(E#p))"f

E
, (3)

where the unknown functions are the density o, the gas velocity u, the total energy of the gas
E and its pressure p; fo, fu, f

E
are source terms for mass, momentum and energy, respectively.

The total energy E of the gas is decomposed into a sum of kinetic and internal energy

E"1
2
ou2#oe,
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where e is the speci"c internal energy, which is given as a function of both density o and
pressure p by the equation of state

e"e(o, p).

We assume the gas to be ideal that means the equation of state takes the form

p"Ro¹,

where R is a constant and the internal energy e"e(¹ ) is a function of temperature ¹. In
addition, we assume that the gas is polytropic, i.e., e is proportional to ¹

e"c
v
¹,

where c
v
is the speci"c heat at constant volume. The enthalpy h

h"e#
p

o

is a function of ¹,

h"c
p
¹.

For a polytropic gas the speci"c heat at constant pressure c
p
is also assumed to be constant.

The equation of state for a polytropic gas takes the form

e"c
v
¹"A

c
v

RB
p

o
"

p

(c!1)o
,

where R"c
p
!c

v
is the gas constant and c"c

p
/c

v
is the ratio of speci"c heats and the

pressure p is given by

p"(c!1)oe. (4)

Equations (1)} (3) are completed by initial and boundary conditions upon o, u and E.

3. COMPRESSOR MODEL

We have investigated the #ow in a two-stage high-speed compressor. The domain of
calculation consists of "ve single unbladed regions, one at the left entrance and one behind
every blade row. The domain behind the stator of stage 2 serves as a model for a down-
stream plenum which plays an important role in the surge behaviour of the compressor
(Moore & Greitzer 1986) and it also determines the frequency of the surge oscillations. The
geometry as well as the characteristic and the design parameters of the compressor under
consideration are described in the Appendix. For the numerical calculation of the #ow in
the unbladed regions of our model we use a Godunov method with Roe solver by LeVeque
(1994, 1997).

The #ow in a compressor is in#uenced by the interaction of several compressor stages,
where every single stage consists of one rotor and one stator which are separated by an
interblade-row space. The simulation in our model is carried out in these gaps between
rotor and stator only, while the in#uence of rotor and stator is given by transfer functions.
For the simulation of the #ow between the adjacent blade rows we neglect the radial
component of velocity, i.e., the #ows are annular and the simulation is two-dimensional. In
these unbladed regions, where we use 2-D Euler equations, we restrict ourselves to periodic
boundary conditions in the circumferential direction, what is equivalent to considering the
motion on a surface of a cylinder. In the axial direction, in order to avoid any nonphysical



ROUTE TO SURGE FOR A THROTTLED COMPRESSOR 1109
re#ections at in#ow and out#ow of the compressor, we use nonre#ecting boundary condi-
tions, which have been introduced by Engquist & Majda (1977) and Giles (1990) (see
Section 3.1).

The in#uence of stator and rotor blades, like the transfer of energy from the rotor to the
#uid or pressure rise, as well as the interaction of several unbladed regions is simulated by
means of transfer functions. The transfer function gives values for velocity, internal energy
and density on the left and right boundary of every interblade-row gap at time step n#1 as
a function of these quantities at time step n, which we have obtained by means of our
simulation. So we take into account the in#uence of stator and rotor of every single
compressor stage without explicitly simulating the #ow in a blade row. The transfer
functions are obtained from compressor characteristics and conservation laws (see Section
3.2).

3.1. NON-REFLECTING BOUNDARY CONDITIONS

To implement boundary conditions at in#ow and out#ow we transform equations (1)} (3),
which are a hyperbolic system of partial di!erential equations (PDE), for two dimensions
into

LU

Lt
#A(U)

LU

Lx
#B (U)

LU

Ly
"0, (5)

where

U"G
o

u

v

p H , A(U)"C
u o 0 0

0 u 0 o~1

0 0 u 0

0 cp 0 u D and B(U)"C
v 0 o 0

0 v 0 0

0 0 v o~1

0 0 cp v D .

Equation (5) is called hyperbolic if any real linear combination aA (U)#bB(U) is
diagonalizable with distinct real eigenvalues, which depend on U. These eigenvalues
determine the direction of characteristic curves, along which the values of certain character-
istic variables propagate. Therefore, the values of outgoing characteristic variables are not
to be prescribed at the boundary but calculated by extrapolating the corresponding
characteristic curves. The values of incoming characteristic variables can be prescribed
either in order to control the state of the system or to describe the in#uence of adjacent
interblade-row spaces.

While for an exact formulation of boundary condition it would be necessary to calculate
characteristic curves for the nonlinear equation (5), we restrict ourselves because of simpli-
city to a linearized equation. That means we linearize equation (5) around a given
steady-state solution and formulate boundary conditions for perturbations to this solution.
In this case characteristic curves are straight lines. In addition, we assume that disturbances
propagate in the axial direction only. To prescribe nonre#ecting boundary conditions at
in#ow and out#ow of the compressor means to prescribe the values of incoming character-
istic curves such that any disturbance leaving the compressor should not be re#ected by the
boundary.

The linearization of equation (5) around a given steady state U< take the form

LU3
Lt

#A(U< )
LU3
Lx

#B (U< )
LU3
Ly

"0 , (6)
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where U3 "(oJ , uJ , vJ , pJ ) is a small disturbance of a solution U< "(oL , uL , vL , pL ) to equation (5). We
assume that waves travel in the axial direction only, that means we assume

LU3
Ly

"0.

Due to the hyperbolicity of equation (6), we can decompose

A"RKR~1, (7)

where K"diag(j
1
, j

2
, j

3
, j

4
) is the diagonal matrix of eigenvalues and R"[r

1
, r

2
, r

3
, r

4
]

is the matrix of right eigenvectors with

Ar
i
"j

i
r
i
, i"1,2, 4.

We de"ne characteristic variables

c :"R~1U3

and using equation (7) gives a linear hyperbolic PDE for c

Lc

Lt
#K

Lc

Lx
"0,

which decouples into four scalar PDEs, whose solutions are

c
i
(x, t)"c

i
(x!j

i
t, 0), i"1,2, 4.

According to the eigenvalues of A for 0(uL (c, which are j
1,2

"uL '0, j
3
"uL #c'0,

j
4
"uL !c(0 (c denotes the speed of sound) the characteristic variables c

1
, c

2
, c

3
describe

right-travelling waves and c
4

describes a left-travelling wave. The transformation between
characteristic and original variables is given by

G
c
1

c
2

c
3

c
4
H"C

!c2 0 0 1

0 0 oL c 0

0 oL c 0 1

0 !oL c 0 1D G
oJ
uJ
vJ
pJ H (8)

and

G
oJ
uJ
vJ
pJ H"C

!1/c2 0 1/2c2 1/2c2

0 0 1/2oL c !1/2o( c

0 1/oL c 0 0

0 0 1/2 1/2 D G
c
1

c
2

c
3

c
4
H . (9)

Since the characteristic variable c
4

at in#ow and c
1
, c

2
, c

3
at out#ow of every interblade-

row gap are calculated by extrapolating characteristic curves and cannot be prescribed from
outside the only possibility to prescribe boundary conditions is to specify c

1
, c

2
, c

3
on the

left and c
4

on the right side of every interblade-row gap; to impose boundary conditions,
which prevent any re#exions of outgoing waves. We therefore set c

1
, c

2
, c

3
"0 at the in#ow

and c
4
"0 at the out#ow.

3.2. TRANSFER FUNCTIONS

For the coupling of several interblade-row gaps we have to determine o, u, v and E at time
step n#1 on the right and left boundary of every blade row from values of these variables
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at time-step n, which we have obtained by means of our simulation. To this end we have to
evaluate conservation laws for mass, momentum and energy and to extrapolate character-
istic curves. The conservation laws for a blade row are derived by integrating equations
(1)}(3) over a rectangular domain covering the blade row. Restricting ourselves to a quasi-
stationary transfer, that means we neglect the time derivatives, and letting the axial distance
between the left and right boundary go to zero we obtain

o
r
u
r
!o

l
u
l
"fo , (10)

o
r
u2
r
#p

r
!(o

l
u2
l
#p

l
)"f

u
, (11)

o
r
u
r
v
r
!o

l
u
l
v
l
"f

v
, (12)

u
r
(E

r
#p

r
)!u

l
(E

l
#p

l
)"f

E
, (13)

where the indices l and r describe the left and right side of the blade row, and fo , f
u
, f

v
, f

E
are

source terms for mass, momentum and energy for the blade row under consideration. While
there is no source term for mass, the source terms for momentum and energy are calculated
as a function of mass #ow at time-step n

m5 n :"0.5(on
l
un
l
#on

r
un
r
)

(on
i
, un

i
, i"l, r are values for density and axial velocity at time n from the simulation) by

f
u
(m5 n) :"o

r
u2
r
#p

r
!(o

l
u2
l
#p

l
), f

v
(m5 n) :"o

r
u
r
v
r
!o

l
u
l
v
l
,

f
E
(m5 n) :"u

r
(E

r
#p

r
)!u

l
(E

l
#p

l
),

where o
i
, u

i
, v

i
and E

i
(i"l, r) are values from the compressor characteristic for the

corresponding mass #ow m5 n (see Tables A3 and A4). By linearizing equations (1)}(3) over
boundary values at time-step n we calculate characteristic variables for disturbances of
these boundary values (see equation (8)) c

1
, c

2
, c

3
on the left and c

4
on the right boundary by

extrapolating from the interior. In order to determine c
1
, c

2
, c

3
on the left and c

4
on the

right boundary at time-step n#1 we have to solve a polynomial equation of third order.
While the Euler equations of gas dynamics do not take into account any e!ects of viscosity,
in our model the e!ects of viscosity are captured by source terms for energy, which are
positive for rotors and negative for stators. Therefore, the compressor model is a dissipative
dynamical system, that means a dynamical system with loss of energy, which is compen-
sated by source terms for energy. In order to take into consideration the time delay
in#uence of blade rows we use a simple ODE

u#q
du
dt

"u
s
, (14)

where q denotes the delay time, the time for the gas to pass a blade row and u
s
denotes the

"nal state, obtained from the transfer relation. In addition, the e!ect of rotation of the rotor
has been considered by introducing a delay in space in the circumferential direction. The
number of blades has been captured in the calculation by averaging over those circumferen-
tial grid points belonging to one passage and applying the transfer function to the averaged
values.

4. INSTABILITIES AND BIFURCATIONS

The solution behaviour of our model is determined by the values for oL
l
, uL

l
, vL

l
, pL

l
at the inlet

and oL
r
, uL

r
, vL

r
, pL

r
at the outlet of the compressor over which equation (5) has been linearized

to formulate nonre#ecting boundary conditions. By means of the compressor characteristic



TABLE 1
Overview of the di!erent solution branches

Branch Interval of stability for
pL
r
(kPa) and mR (% of DMF) Remarks

Steady state 167}170 102.01}101.77 Time independent #ow
Rotating stall-1 170}199 101.77}98.52 2 Cells, 150Hz
Rotating stall-2 182}199 101.08}98.52 3 Cells, 150Hz
Rotating stall-3 192}199 100.03}98.52 4 Cells, 150Hz
Rotating pressure oscillations 199}205 98.52}96.86 1 Cell, 150 Hz, 600Hz
Surge 205}208 5Hz

Figure 1. Schematic bifurcation diagram.
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we can represent oL
r
, uL

r
and vL

r
in terms of the exit pressure pL

r
, thus pL

r
has been our bifurcation

parameter. By changing p(
r

we have changed oL
r
, uL

r
, vL

r
and the mass #ow mR through the

compressor. In the following, we describe the solution behaviour of our model if mR "mR (pL
r
)

is reduced step by step (pL
r
is increased) starting with one selected value for exit pressure

pL
r
"167kPa for which the mass #ow m5 is 102.01% of design mass #ow (DMF). With

increasing exit pressure a primary stable steady state loses stability to periodic solutions
with a number of stall cells followed by rotating pressure oscillations and "nally surge if the
exit pressure is su$ciently large. The transition to surge is described in this chapter and an
overview of all solution branches we found is given in Table 1 and presented schematically
in Figure 1.

4.1. BIFURCATION OF STEADY STATES AND ROTATING STALL

If we choose pL
r
+167 kPa we obtain a stable steady-state solution, the solution given by the

compressor characteristic. All system trajectories are attracted by this solution. The #ow
converges to a state which is independent of time and space in every single region of the
whole domain. For su$ciently large mass #ow (low exit pressure pL

r
) this steady-state

solution is the only attracting state. We have transformed our model into a time discrete



Figure 2. Pressure in the compressor for a periodic
solution with two rotating stall cells behind every blade
row moving in circumferential direction,

pL
r
"172.16 kPa.

Figure 3. Pressure at compressor exit ver-
sus time, pL

r
"172.16kPa.

Figure 4. Pressure at compressor exit versus time,
pL
r
"182.22 kPa.

Figure 5. Pressure at compressor exit versus time,
pL
r
"192.08 kPa.
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dynamical system of the form x
n`1

"f (x
n
), where the steady state is a "xed point of f. For

increasing exit pressure we have traced this steady solution branch. In each step of the
tracing, in order to detect bifurcation points, the eigenvalues of the Jacobian matrix of f
have been calculated. If the exit pressure is larger than a critical value, pL

r
+170 kPa, the

norm of one pair of complex conjugate eigenvalues exceeds 1. The steady-state losses its
stability by a Hopf bifurcation to a time-periodic state with two rotating stall cells in every
single unbladed region.

In Figure 2, the pressure in the "ve unbladed regions of the compressor is given for just
one point in time if pL

r
is slightly above this critical value. Behind every blade row there are

two stall cells moving in circumferential direction. In Figure 3, the instability of the steady
state is demonstrated for pL

r
"172.16 kPa. The pressure at the compressor exit is plotted

versus time. It can be seen how the #ow at the compressor exit escapes the originally stable
steady state and approaches a new periodic orbit with two moving stall cells. The number of
stall cells in the new periodic state depends on the pressure at the exit. For pL

r
+182kPa

a new periodic solution with three stall cells and for pL
r
+192kPa a periodic solution with



Figure 6. Pressure at compressor exit versus time, pL
r
"199.74 kPa.
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four stall cells appear. In Figures 4 and 5 the exit pressure is plotted versus time for stable
periodic solutions with three and four stall cells. The branch with two stall cells remains
stable. Thus, altogether three stable periodic solutions coexist.

The sense of rotation of the stall cells corresponds to that of the rotor and the rotation
frequency is approximately 150 Hz which is about 60% of that of the rotor. The pressure in
the stall cells does not depend on time. For these #ows the mass #ow and the averaged
pressure in every unbladed domain does not depend on time, i.e., these #ows include no
e!ects of surge. All solution branches lead to a solutions with time-periodic oscillation of
the pressure in the stall cells, if the exit pressure is increased further and "nally to surge, i.e.,
an oscillation of mass #ow in time.

4.2. ROTATING PRESSURE OSCILLATIONS

For pL
r
+199 kPa the periodic solutions with stall cells disappear and a new solution occurs

with two cells, whose pressure oscillates in time. Both cells are moving in circumferential
direction with opposite sense of rotation what can be seen in Figure 6.

In contrast to the rotating stall solutions, where the pressure in the cells remains constant,
now the pressure oscillates in time. The mass #ow for this solution remains time indepen-
dent. The rotation frequency of the stall cell is again 150Hz and the frequency of the
pressure oscillation is approximately 600 Hz.

A similar form of instability has been observed experimentally by Kameier & Diederen
(1996) and it was called the rotating instability. According to Kameier and Diederen,
rotating instabilities result from rotating source mechanisms in the blade tips of the rotor.
The di!erence to rotating stall is that the pressure in the rotating cells is not constant. Due
to the separation of eddies from the surface of the blades circumferential modes of high
order are generated. The correspondence of the frequency of the perturbation and the blade
passing frequency (BPF) may lead to an increase of sound and to blade oscillations of high
amplitudes (Kameier 1994). This is of course a 3-D e!ect, which is not included in our
simulation.



Figure 7. Averaged pressure behind rotor 2 versus
time, pL

r
"205.11kPa.

Figure 8. Mass #ow behind rotor 2 versus time,
pL
r
"205.11 kPa.

Figure 9. Movement of point of operation in the plane mass #ow/pressure ratio, pL
r
"205.11kPa.
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4.3. SURGE

Finally, if the pressure at the exit is increased further, pL
r
5205kPa, all solutions branch

with stall cells and rotating stall cells become instable and a solution occurs with variation
of mass #ow in time.

We observed a high-pressure wave, which propagates in axial direction from the com-
pressor exit to the entrance. In Figures 7 and 8, the averaged pressure and the mass #ow at
the exit of the compressor is given versus time. A peak of high pressure is coupled with
a decrease of mass #ow, the mass #ow becomes negative, followed by a period of irregular
behaviour until the next surge period starts. The frequency is approximately 5 Hz. Figure
9 shows the movement of the point of operation in the plane mass #ow/pressure ratio. The



Figure 10. Pressure at compressor exit versus imposed exit pressure for a throttled compressor.
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mass #ow decreases to zero followed by a decrease of pressure ratio between exit and inlet
until the mass #ow and pressure ratio increase again.

4.4. THROTTLING OF THE COMPRESSOR

In this part of the calculation we have increased the exit pressure while calculating the
evolution of the #ow in time, that means we have throttled the compressor. The #ow is
calculated for a time period of 0.07 s and the exit pressure pL

r
is increased during this period

of time from 160 to 200kPa and the mass #ow is reduced from 102.01 to 96.86% of DMF.
In Figure 10, the pressure at the exit of the compressor is given versus the imposed exit
pressure pL

r
. We observed that the state of the compressor changes. For pL

r
"160kPa we

start with mR "102.01% of DMF with a regular #ow without any disturbances. For
pL
r
"170kPa spikes incept, which disappear followed by rotating stall cells for pL

r
"175kPa.

These stall cells disappear after a period of approximately 0.01 s. Spikes appear again for
pL
r
"185 and 195kPa stall cells appear with oscillating pressure.

5. COMPARISON OF NUMERICAL SIMULATION WITH MEASURED DATA

The simulation results are now compared with test results from the compressor under
consideration, which have been recorded by Kameier (1997). The data are taken from the
10-stage high-pressure compressor (HPC) of the BR710 jet engine, while the numerical
simulation is done for the "rst two stages. Several compressor stall and surge events are
systematically analysed by means of fast responding pressure measurements. Three equally
spaced pressure sensors were distributed along the circumference near the leading edge of
every rotor. The time and spatial resolution of the pressure data are limited by the
available recording system, what a!ects the comparison between experimental and cal-
culated data.



Figure 11. Frequency spectrum of pressure signals
behind rotor 1.

Figure 12. Frequency spectrum of pressure signals
behind rotor 2.
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5.1. SUMMARY OF ROTATING STALL RESULTS FROM HPC RIG

For a large tip clearance ratio rotating stall and rotating pressure oscillations have been
observed near the instability point. Inception of rotating stall appears at 0.97% of design
mass #ow.

Figures 11 and 12 show frequency spectra of the pressure signatures behind rotors 1 and
2 of these sensors for a mass #ow near the instability point. There are two main frequencies.
The frequency of rotating stall oscillations is a little larger than 300 Hz for rotor 1 and
a little smaller than 300 Hz for rotor 2 and the frequency of rotating pressure oscillations,
which result from large tip clearance ratios is about 600 Hz. These values are similar to the
numerical simulation results. Although our numerical simulations are two-dimensional and
we therefore are not able to locate the rotating pressure oscillations of the numerical results
at the tips of the blades, there are some qualitative similarities between numerical and
experimental results, namely the oscillation of pressure in the stall cells.

5.2. SUMMARY OF SURGE RESULTS FROM HPC RIG

If the mass #ow undergoes a critical value, surge oscillations have been observed. Figure 13
shows a pressure signal for a surge event behind rotor 1. Inception of surge is at 0.92% of
design mass #ow. The frequency of measured surge oscillations is nearly 2 Hz, what is a little
smaller than in the numerical simulation.

The systematic analysis of measurements in the compressor rig operating in unstable
conditions up to surge support the following understanding of the instability mechanisms
(Kameier 1997). The surge shock wave is propagating as a nonplanar wave through the
compressor. The #ow direction right after the surge is upstream which causes a large
temperature increase in the front stages. The time between the occurrence of the trigger and
the surge event is very short. For detailed conclusions and comparison with numerical
simulations the instrumentation is too sparse. The numerical simulations have a high time
and space location resolution. Especially the circumferential distribution of several trans-
ducers on the same axial position would be bene"cial for a better comparison.



Figure 13. Pressure versus time behind rotor 1.
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6. CONCLUSION

In this paper, we have numerically investigated the e!ects of throttling the compressor to
#ow"eld instabilities. The compressor model presented here is able to describe the qualitat-
ive transition behaviour of the #ow from the inception process of rotating stall to surge. It
has been shown that the #ow undergoes several qualitative changes if the imposed exit
pressure is increased and the mass #ow through the compressor is reduced. We start with
a steady-state solution if the mass #ow through the compressor is su$ciently large. For an
exit pressure slightly above the "rst critical value we observed coexisting solution branches
with 2, 3 and 4 rotating stall cells. These branches lead to states with pressure oscillations in
the stall cells and "nally surge, i.e., solutions with mass #ow periodic in time, when the exit
pressure is su$ciently large. The rotating stall and surge phenomena could also be found in
the experimental investigations. The transition to surge seems to follow a scenario found by
Day, namely surge appears after an initial period of rotating stall. Furthermore, we found
that the scenario leading to surge is similar to the transition to irregular behaviour observed
in many problems of hydrodynamics. A primary steady state losses stability to a time-
periodic state followed by a state with two frequencies and "nally irregular turbulent
behaviour. Although we use Euler equations to simulate the #ow in the unbladed regions,
our model takes into account the e!ects of viscosity by transfer conditions. Comparison of
numerical simulation results with experimental data have shown that the model is able to
describe the rotating stall and surge phenomena found in the experimental data. A more
detailed investigation of the relations between instabilities and design parameters is still
necessary to fully understand the physical phenomena.
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APPENDIX

In Tables A1 and A2 the geometry and the design parameters of the two-stage compressor
under consideration for numerical investigation is given. Tables A3 and A4 contain the
compressor characteristic. The used symbols are given below.

a angle 0 inlet rotor absolute system
MNS/MNR Mach number stator/rotor 1 inlet rotor relative system
T total temperature 2 exit rotor relative system
DT di!erence in total temperatures 3 inlet stator absolute system

(exit!inlet) 4 exit stator absolute system
PS/PT static/total pressure
DMF design mass #ow
mR mass #ow
TABLE A1
Compressor geometry

Stage Axial position (m) Radius in (m) Radius out (m)

0.0000 0.1348 0.2615

0.0441 0.1348 0.2615

1 0.0882 0.1415 0.2558
0.1009 0.1415 0.2558
0.1561 0.1553 0.2489

0.1685 0.1553 0.2489
2 0.2111 0.1692 0.2458

0.2208 0.1692 0.2458
0.2583 0.1784 0.2435

0.2653 0.1784 0.2435



TABLE A2
Design parameters for a two-stage compressor

No. of rotor blades stage 1/2 32/50
No. of stator blades stage 1/2 31/38
Reynolds number at rotor inlet 5.1]106
Mach number at rotor inlet 0.744
Design speed 14636.36/min
Design mass #ow (DMF) 33.19kg/s

TABLE A3
Compressor characteristic; stages 1 and 2

Stage mR (% of
DMF) a

1
(deg) a

2
(deg) a

3
(deg) a

4
(deg) MNR MNS DT/T0

95.05 53.28 33.32 46.37 9.50 1.024 0.744 0.160
96.86 52.30 33.12 45.41 9.26 1.035 0.750 0.175
98.52 51.34 33.00 44.22 9.05 1.047 0.757 0.153

1 100.00 50.49 32.95 43.04 8.95 1.059 0.763 0.149
101.08 49.80 32.91 41.94 8.92 1.068 0.769 0.145
101.77 49.36 32.88 41.15 8.90 1.075 0.774 0.142
102.01 49.20 32.87 40.86 8.90 1.077 0.776 0.141

95.05 55.92 33.36 46.18 12.51 0.969 0.721 0.154
96.86 55.28 33.22 45.25 12.28 0.980 0.727 0.152
98.52 54.49 33.10 44.09 12.09 0.992 0.734 0.150

2 100.00 53.58 33.02 42.67 12.01 1.006 0.742 0.147
101.08 52.66 32.98 41.06 11.97 1.019 0.752 0.142
101.77 51.93 32.92 39.54 11.92 1.029 0.763 0.138
102.01 51.66 32.89 38.89 11.90 1.033 0.767 0.136

TABLE A4
Compressor characteristic; stages 1 and 2

Stage mR (% of
DMF)

PS0
(kPa)

PS3
(kPa)

PS4
(kPa)

PT0
(kPa)

PT3
(kPa)

PT4
(kPa)

T0 [K]

95.05 78.04 112.59 130.03 101.35 162.50 159.82 288.15
96.86 76.73 111.35 128.10 101.35 161.68 159.20 288.15
98.52 75.35 109.48 125.27 101.35 160.02 157.75 288.15

1 100.00 74.04 107.42 121.69 101.35 157.89 155.68 288.15
101.08 73.01 105.28 117.90 101.35 155.68 153.47 288.15
101.77 72.32 103.69 114.93 101.35 154.02 151.68 288.15
102.01 72.11 103.07 113.83 101.35 153.40 150.99 288.15

95.05 130.03 179.67 208.22 159.82 253.93 249.86 334.20
96.86 128.10 177.47 205.11 159.20 252.21 248.48 333.29
98.52 125.27 173.74 199.74 157.75 248.55 245.17 332.14

2 100.00 121.69 168.57 192.08 155.68 242.97 239.79 330.98
101.08 117.90 162.30 182.22 153.47 236.14 232.90 329.89
101.77 114.93 156.30 172.16 151.68 229.59 225.73 329.13
102.01 113.83 153.68 167.40 150.99 226.83 222.49 328.85
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